Table of Contents
Definition
\begin{array}{l}Let\text{ }(X,\tau )\text{ }be\text{ }a\text{ }topological\text{ }space\text{ }and\text{ }A\subseteq X.\text{ }Then\text{ }the\text{ }interior\\\text{ }of\text{ }A\text{ }is\text{ }the\text{ }union\text{ }of\text{ }all\text{ }open\text{ }subsets\text{ }of\text{ }A.\text{ }It\text{ }is\text{ }denoted\text{ }by\\\text{ }Int\left( A \right)\text{ }or~\text{ }{{A}^{o}}.Int\left( A \right)is\text{ }the\text{ }largest\text{ }open\text{ }subset\text{ }of\text{ }A.\\i-e~\text{ }{{A}^{o}}~\subseteq A\end{array}
OR
The set of all interior points of A is called the interior of set A. it is denoted by Int(A).
Example1
Let X={a,b,c,d,e} and the topology τ={φ,{b},{a,b},{a,b,d},{a,c,d,e},X}
Let A= {a,b,c} ⊆X and B={a,e} ⊆X
Find int(A) and int(B)
Solution
Open subsets: φ,{b},{a,b},{a,b,d},{a,c,d,e},X
Open subsets of set A are
φ,{b}
int(A)=union of all open subsets of A={a,b,c}
int(A)= φ∪{b}
int(A)={b}
Open subsets of set B
φ
int(B)=union of all open subsets of B={a,e}
int(B)= φ
Example2
Consider the set X={1,2,3,4} and the topology τ={φ,{1},{1,2,3},{4},{1,4},X}
let A= {1,3,4} ⊆ X.
Find interior points of set A.
Solution
Int(A)= set of all interior points of A
The Interior points of set ‘A’ are 1 and 4 (see the solution for finding interior points).
So,
Int(A)={1,4}
Add a Comment