Closure of a set (Definition+4 Theorems proof with examples)

Table of Contents

Definition

 \begin{array}{l}\text{Let }\left( {\text{X,}\tau } \right)\text{ be a topological space, and A}\subseteq \text{X }\left( {\text{A subset of set X or equal to X}} \right)\\\text{ then the closure of A is the intersection of all closed supersets of A}\text{.}\\\text{it is denoted by }\!\!~\!\!\text{ }\overline{\text{A}}\text{ orCl(A)}\text{.}\end{array}
Example
 \begin{array}{l}Let\text{ }X=\left\{ {1,2,3,4} \right\}\\\tau =\{\varphi ,\left\{ 1 \right\},\left\{ 2 \right\},\left\{ 3 \right\},\left\{ {1,2} \right\},\left\{ {2,3} \right\},\left\{ {1,3} \right\},\left\{ {1,2,3} \right\},X\}\\A=\left\{ {1,3} \right\}~~~~~~~\overline{A}=?\\B=\left\{ 4 \right\}~~~~\overline{B}=?\end{array}
Solution
\begin{array}{l}\text{closed subsets of x}\\\{X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {1,2,4} \right\},\left\{ {3,4} \right\},\left\{ {1,4} \right\},\left\{ {2,4} \right\},\left\{ 4 \right\},\theta \}\\\\\text{closed supersets of A}\\X,\left\{ {1,3,4} \right\}\\\overline{\text{A}}\text{(closure of A) = intersection of all closed supersets of A}\\\overline{A}=X\bigcap \left\{ {1,3,4} \right\}\\\overline{A}=\left\{ {1,3,4} \right\}\\\\\text{closed supersets of B}\\X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {1,2,4} \right\},\left\{ {3,4} \right\},\left\{ {1,4} \right\},\left\{ {2,4} \right\},\left\{ 4 \right\}\\\overline{\text{B}}\text{(closure of B) = intersection of all closed supersets of B}\\\overline{B}=X\bigcap \left\{ {2,3,4} \right\}\bigcap \left\{ {1,3,4} \right\}\bigcap \left\{ {1,2,4} \right\}\bigcap \left\{ {3,4} \right\}\bigcap \left\{ {1,4} \right\}\bigcap \left\{ {2,4} \right\}\bigcap \left\{ 4 \right\}\\\overline{B}=\left\{ 4 \right\}\end{array}

Theorem1: The closure of a subset A of a topological space is the smallest closed superset of A.

Proof

Since the intersection of any number of closed sets is closed so the closure of A, being the intersection of its closed supersets, is also closed and is a superset of A. Since the intersection of any number of sets is always a subset of each of the sets so, the closure of A is the smallest closed superset of A.

Theorem2:

 \begin{array}{l}In\text{ }a\text{ }topological\text{ }spaceX\\i.~\overline{\varphi }=\varphi ~~~ii.~\overline{X}=X\end{array}
Proof
\begin{array}{l}i.~\text{ }Since\text{ }\varphi \text{ }isclosed,\text{ }so\text{ }it\text{ }is\text{ }the\text{ }smallest\text{ }closed\text{ }superset\text{ }of\text{ }itself~~~~~~~~~~~~~~~~~~~\\~\Rightarrow \overline{\varphi }=\varphi \\~ii.~\text{ }Since\text{ }X\text{ }isclosed\text{ }so\text{ }it\text{ }is\text{ }the\text{ }smallest\text{ }closed\text{ }superset\text{ }of\text{ }itself~\\\Rightarrow \overline{X}=X\end{array}
Example
\begin{array}{l}let\text{ }X=\{a,b\}\\\tau =\{\varphi ,\{a\},\{b\},X\}\\A=X\text{  }\\\text{  }\overline{A}=?\\B=\varphi \text{    }\\\text{ }\overline{B}=?\end{array}
Solution
 \begin{array}{l}\text{closed subsets of X}\\X,\{a\},\{b\},\varphi \\\\\text{closed supersets of X}\\X\text{ itsef only the closed superset of x}\\so\\\overline{X}=X\\\\\text{closed supersets of }\varphi \\\varphi \text{ itsef only the closed superset of }\varphi \\so\\\overline{\varphi }=\varphi \end{array}

Theorem3:

 A\text{ }subset\text{  }\!\!'\!\!\text{ }A'of\text{ }a\text{ }topological\text{ }space\text{ }X\text{ }is\text{ }closed\text{ }iff\text{ }\overline{A}=A.
Proof

Let A be a closed subset of topological space X, then A itself be the smallest closed superset of A.

So\text{ }\overline{A}=A

Conversely,

\begin{array}{l}Let\text{ }\overline{A}=A~\text{ }\\\overline{{A\text{ }}}is\text{ }the\text{ }intersection\text{ }of\text{ }all\text{ }closed\text{ }supersets\text{ }of\text{ }A.\\Since\text{ }\overline{{A\text{ }}}is\text{ }closed\text{ }so\text{ }A\text{ }is\text{ }closed.\end{array}
Example
 \begin{array}{l}Let\text{ }X=\left\{ {1,2,3,4} \right\}\\\tau =\{\varphi ,\left\{ 1 \right\},\left\{ 2 \right\},\left\{ 3 \right\},\left\{ {1,2} \right\},\left\{ {2,3} \right\},\left\{ {1,3} \right\},\left\{ {1,2,3} \right\},X\}\\A=\left\{ {2,3} \right\}~~~~~~~\overline{A}=?\\B=\left\{ {1,4} \right\}~~~~\overline{B}=?\end{array}
Solution
 \begin{array}{l}\text{closed subsets of x}\\\{X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {1,2,4} \right\},\left\{ {3,4} \right\},\left\{ {1,4} \right\},\left\{ {2,4} \right\},\left\{ 4 \right\},\varphi \}\\\\\text{closed supersets of A}\\X,\left\{ {2,3,4} \right\}\\\overline{\text{A}}\text{(closure of A) = intersection of all closed supersets of A}\\\overline{A}=X\bigcap \left\{ {2,3,4} \right\}\\\overline{A}=\left\{ {2,3,4} \right\}\\\text{Here }\overline{A}\text{ is not equal to A because A is subset of topological space X }\\\text{but A is not a closed subset of topological space X}\text{.}\\\text{so, A is not equal to }\overline{A}.\\\\\text{closed supersets of B}\\X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {1,2,4} \right\},\left\{ {3,4} \right\},\left\{ {1,4} \right\},\left\{ {2,4} \right\},\left\{ 4 \right\}\\\overline{\text{B}}\text{(closure of B) = intersection of all closed supersets of B}\\\overline{B}=X\bigcap \left\{ {2,3,4} \right\}\bigcap \left\{ {1,3,4} \right\}\bigcap \left\{ {1,2,4} \right\}\bigcap \left\{ {3,4} \right\}\bigcap \left\{ {1,4} \right\}\bigcap \left\{ {2,4} \right\}\bigcap \left\{ 4 \right\}\\\overline{B}=\left\{ 4 \right\}\\\text{Here B is equal to }\overline{B}\text{ because B is closed subset of topological space X}\end{array}

Theorem4:

 A\text{ }subset\text{  }\!\!'\!\!\text{ }A'of\text{ }a\text{ }topological\text{ }space\text{ }X\text{ }is\text{ }closed\text{ }iff\text{ }\overline{\overline{A}}=A.
Proof
 \begin{array}{l}As\text{ }the\text{ }closure\text{ }of\text{ }a\text{ }closed\text{ }set\text{ }is\text{ }equal\text{ }to\text{ }itself\text{ }(\overline{A}=A).\\Now\text{ }because~\text{ }\overline{A}\text{ }is\text{ }closed\text{ }set.\\\Rightarrow cl\left( {\overline{A}} \right)=~\overline{A}~~~~~~~\\\overline{\overline{A}}=A\end{array}
Example
 \begin{array}{l}Let\text{ }X=\left\{ {1,2,3,4} \right\}\\\tau =\{\varphi ,\left\{ 1 \right\},\left\{ 2 \right\},\left\{ 3 \right\},\left\{ {1,2} \right\},\left\{ {2,3} \right\},\left\{ {1,3} \right\},\left\{ {1,2,3} \right\},X\}\\A=\left\{ {3,4} \right\}~~~~~~~\overline{A}=?\end{array}
Solution
 \begin{array}{l}\text{closed subsets of x}\\\{X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {1,2,4} \right\},\left\{ {3,4} \right\},\left\{ {1,4} \right\},\left\{ {2,4} \right\},\left\{ 4 \right\},\varphi \}\\\text{closed supersets of A}\\X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {3,4} \right\}\\\overline{A}\text{(closure of A) = intersection of all closed supersets of A}\\\overline{A}=X\bigcap \left\{ {2,3,4} \right\}\bigcap \left\{ {1,3,4} \right\}\bigcap \left\{ {3,4} \right\}\\\overline{A}=\left\{ {3,4} \right\}\\\text{Here A is equal to }\overline{A}\text{ because A is closed subset of topological space X}\text{.}\\\text{As the closure of a closed set is equal to itself (}\overline{\text{A}}\text{=A)}\text{.}\\\\\text{we want to show that }\overline{\overline{A}}=A\\\overline{A}=\left\{ {3,4} \right\}\\\text{closed superset of }\overline{\text{A}}\\X,\left\{ {2,3,4} \right\},\left\{ {1,3,4} \right\},\left\{ {3,4} \right\}\\\overline{\overline{\text{A}}}\text{(closure of }\overline{\text{A}}\text{) = intersection of all closed supersets of }\overline{\text{A}}\\\overline{\overline{A}}=X\bigcap \left\{ {2,3,4} \right\}\bigcap \left\{ {1,3,4} \right\}\bigcap \left\{ {3,4} \right\}\\\overline{\overline{A}}=\left\{ {3,4} \right\}\\so\overline{\overline{A}}=A\\\left\{ {3,4} \right\}\text{=}\left\{ {3,4} \right\}\end{array}

Add a Comment

Your email address will not be published. Required fields are marked *